Effect of the Coatings on Planar Transmission Lines
Effect of the Coatings on Planar Transmission Lines

Jan. 28, 2023
Takayuki HOSODA

Printed circuit boards are usually coated with solder resist to protect the copper foil, and in some cases filler is also used, but from a transmission line perspective, it is a factor that affects transmission line characteristics. To understand the extent of this effect, we investigated the influence of resist and filler by 2D electromagnetic field analysis.

The result shows that even a resist twice as thick as the conductor's thickness of a typical FR4 board can reduce a microstrip line with a characteristic impedance of 66 Ω to 62 Ω or less (≃ -7 %). The effect is even greater in the case of conductor-backed coplanar transmission lines, where a 56 Ω characteristic impedance can be reduced to as low as 49 Ω (≃ -12 %). If filler as thick as the substrate is used, such as at BGA mounting points, the reduction in characteristic impedance can be as much as -20%.

In the case of side-coupled lines, the effect of resist on the characteristic impedance for even modes is small, at a few percent, but for odd modes it can be as low as -10 %. in odd-numbered modes, it can be as much as -10 %, so care must be taken when using it as a differential transmission line. In terms of coupling, this means an increase in coupling of about 1 dB.


Color definitions of the transmission lines

 Red     (#FF0000) : +Signal conductor
 Blue    (#0000FF) : -Signal conductor
 Green   (#00FF00) : Ground conductor
 Yellow  (#FFFF00) : Substrate dielectric
 Cyan    (#00FFFF) : Solder resist, filler or prepreg dielectric
 Pink    (#FFAAFF) : Insulation coating dielectric
 White   (#FFFFFF) : Vaccum

Single ended transmission lines

Simulation box configuration for the field solver
cbcpw.png
By default, H is set to 8 (h + t) and W is set to 12 h + 2 s + w; otherwise, they will be specified separately.

Left : Transmission line model
Right : Pseudo-color display of the absolute value of the electric field, resulting from 2D electromagnetic field solver

micro_stripline.bmp micro_stripline.E.png Z0 ≈ 66.517 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -er=4.6 micro_stripline.bmp

micro_stripline_sr.bmp micro_stripline_sr.E.png Z0 ≈ 61.927 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -er=4.6 -d=20 -ef=4.8 micro_stripline_sr.bmp

micro_stripline_filler.bmp micro_stripline_filler.E.png Z0 ≈ 57.146 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -er=4.6 -d=100 -ef=4.8 micro_stripline_filler.bmp

stripline.bmp stripline.E.png Z0 ≈ 43.939 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -er=4.6 -fill -H=210 stripline.bmp

stripline_pp.bmp stripline_pp.E.png Z0 ≈ 43.442 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -er=4.6 -fill -ef=4.8 -H=210 stripline_pp.bmp

conductor_backed_coplanar.bmp conductor_backed_coplanar.E.png Z0 ≈ 56.095 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=50 -er=4.6 conductor_backed_coplanar.bmp

conductor_backed_coplanar_sr.bmp conductor_backed_coplanar_sr.E.png Z0 ≈ 49.420 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=50 -er=4.6 -d=20 -ef=4.8 conductor_backed_coplanar_sr.bmp

conductor_backed_coplanar_filler.bmp conductor_backed_coplanar_filler.E.png Z0 ≈ 44.285 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=50 -er=4.6 -d=100 -ef=4.8 conductor_backed_coplanar_filler.bmp

shielded_coplanar.bmp shielded_coplanar.E.png Z0 ≈ 69.575 Ω
bmp4ptl -w=50 -h=100 -t=9 -s=50 -er=4.6 -H=210 -W=350 shielded_coplanar.bmp

shielded_coplanar.bmp shielded_coplanar.E.png Z0 ≈ 51.198 Ω
bmp4ptl -w=50 -h=100 -t=9 -s=50 -er=4.6 -fill -ef=4.8 -H=210 -W=350 channelized_coplanar.bmp

Couplers

Simulation box configuration for the field solver
coupler.png
By default, H is set to 8 (h + t) and W is set to 12 h + g + 2 s + 2 w; otherwise, they will be specified separately.

Left : Transmission line model
Center : Pseudo-color display of the absolute value of the electric field in even mode, resulting from 2D electromagnetic field solver
Right : Pseudo-color display of the absolute value of the electric field in odd mode, resulting from 2D electromagnetic field solver

coupler_microstrip.bmp coupler_microstrip.E.even.png coupler_microstrip.E.odd.png Zeven ≈ 76.001, Zodd ≈ 56.237 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -g=100 -er=4.6 coupler_microstrip.bmp

coupler_microstrip_sr.bmp coupler_microstrip_sr.E.even.png coupler_microstrip_sr.E.odd.png Zeven ≈ 72.109, Zodd ≈ 50.762 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -d=20 -g=100 -er=4.6 -ef=4.8 coupler_microstrip_sr.bmp

coupler_microstrip_filler.bmp coupler_microstrip_filler.E.even.png coupler_microstrip_filler.E.odd.png Zeven ≈ 68.365, Zodd ≈ 44.973 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -d=100 -g=100 -er=4.6 -ef=4.8 coupler_microstrip_filler.bmp

coupler_stripline.bmp coupler_stripline.E.even.png coupler_stripline.E.odd.png Zeven ≈ 47.532, Zodd ≈ 40.000 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -g=100 -er=4.6 -fill -H=210 coupler_stripline.bmp

coupler_stripline_pp.bmp coupler_stripline_pp.E.even.png coupler_stripline_pp.E.odd.png Zeven ≈ 47.002, Zodd ≈ 39.540 Ω
bmp4ptl -w=100 -h=100 -t=9 -strip -g=100 -d=20 -er=4.6 -ef=4.8 coupler_microstrip_sr.bmp

coupler_conductor_backed_coplanar.bmp coupler_conductor_backed_coplanar.E.even.png coupler_conductor_backed_coplanar.E.odd.png Zeven ≈ 73.038, Zodd ≈ 55.115 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=100 -g=100 -er=4.6 coupler_conductor_backed_coplanar.bmp

coupler_conductor_backed_coplanar_sr.bmp coupler_conductor_backed_coplanar_sr.E.even.png coupler_conductor_backed_coplanar_sr.E.odd.png Zeven ≈ 68.513, Zodd ≈ 49.402 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=100 -g=100 -d=20 -er=4.6 -ef=4.8 coupler_conductor_backed_coplanar_sr.bmp

coupler_conductor_backed_coplanar_filler.bmp coupler_conductor_backed_coplanar_filler.E.even.png coupler_conductor_backed_coplanar_filler.E.odd.png Zeven ≈ 63.740, Zodd ≈ 43.462 Ω
bmp4ptl -w=100 -h=100 -t=9 -s=100 -g=100 -d=100 -er=4.6 -ef=4.8 coupler_conductor_backed_coplanar_filler.bmp

Appendix — other experimental simulations

hinomaru.bmp hinomaru.E.png Z0 ≈ 42.528 Ohms Ω
bmp4ptl -w=960 -hinomaru hinomaru.bmp

wireline_enamel.bmp wireline_enamel.E.png Z0 ≈ 63.406 Ohms Ω
bmp4ptl -w=115 -h=100 -strip -c=8 -er=4.6 -ec=5.0 -wire wireline_enamel.bmp

coupler_wire.bmp coupler_wire.E.even.png coupler_wire.E.odd.png Zeven ≈ 65.743, Zodd ≈ 34.571 Ω
bmp4ptl -w=115 -h=100 -strip -c=8 -g=100 -d=100 -er=4.6 -ec=5.0 -ef=4.8 -wire coupler_wire.bmp

Download — Source code of the program used in this article

bmp4ptl-0.75.tar.gz [11 kbyte, C source code] — Creates a bitmap of cross-section of a planar transmission line.

BUGS : This program is a front-end processor for 2D field solvers, so it's not very useful by itself.
Wires with oval cross sections are not supported. Simple grids are not suitable for representing circular cross sections.


Reference

  1. atlc — Arbitrary Transmission Line Calculator

www.finetune.co.jp [Mail] © 2000 Takayuki HOSODA.