Perimeter of an ellipse

an ellips
2026-01-26
Takayuki HOSODA

Perimeter of an ellips calculator

The calculation is performed using the relationship between Complete Elliptic Integrals of the Second Kind and the AGM (Arithmetic Geometric Mean).
The approximation of Ramanujan's elliptic perimeter is also calculated.

Perimeter of an Ellipse
Major axes a :
Minor axes b :
Perimeter p :
Ramanujan's approximation pa :
Calculation results:

Some reference values of accurate (to 65 decimal digits) perimeters by WolframAlpha.

a =  1, b = 1 :  6.2831853071795864769252867665590057683943387987502116419498891846... = 2π (exact)
a =  2, b = 1 :  9.6884482205476761984285031963918294119539183978866008250831163524...
a =  5, b = 1 : 21.010044539689000944699164588473738912894812339134152623096835657...
a = 10, b = 1 : 40.639741801008957425577931011816563791313052134504059403405927819...

Formulas Used

equations: perimeter
equations: complete elliptic integral of the second kind
Note. m denotes the parameter m = k2, with k being the elliptic modulus.
K(m) is the complete elliptic integral of the first kind.

APPENDIX — Ramanujan's Perimeter of an Ellipse

Equations: Ramanujans perimeter of an ellipse

REFERENCE

SEE ALSO


www.finetune.co.jp [Mail] © 2000 Takayuki HOSODA.