Online calculator
  Perimeter of an ellips


p = \int_0^{\pi / 2} \sqrt{a \cos^2 \theta  + b \sin^2  \theta}\ d \theta
= 4 a E\left(1 - \left(\frac{b}{a}\right)^2\right)
E(m) is the complete elliptic integral of the second kind with parameter m = k2

Jan. 18 2023
Takayuki HOSODA
Japanese Japanese edition is here.

Perimeter of an ellips

The calculation is performed using the Complete Elliptic Integrals of the Second Kind.
The approximation of Ramanujan's elliptic perimeter is also calculated.

Perimeter caclulator
Major and minor axes   a :   b :      
Ramanujan's approximation to the perimeter of an ellipse p :  
 Download perimeter-0.2.js — source code
Example of more accurate values by WolframAlpha
a =  1, b = 1 :  6.2831853071795864769252867665590057683943387987502116419498891846... = 2π (exact)
a =  2, b = 1 :  9.6884482205476761984285031963918294119539183978866008250831163524...
a =  5, b = 1 : 21.010044539689000944699164588473738912894812339134152623096835657...
a = 10, b = 1 : 40.639741801008957425577931011816563791313052134504059403405927819...

APPENDIX — Ramanujan's Perimeter of an Ellipse


p & = & \pi \left\{(a + b) + \frac{3 (a - b)^2}{10(a + b) + \sqrt{a^2 + 14 ab + b^2}} + \varepsilon \right\}

REFERENCE

SEE ALSO


www.finetune.co.jp [Mail] © 2000 Takayuki HOSODA.